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INTRODUCTIOM

Given the entries of an mxn matrix A and those of a column n-vector
b, the entries of the product Ab can be computed using mn multiplications
and m(n-1) additions by direct application of the formula
(Ab); = aj1b1*. . Faypby i= 1,..:,m.
However, in many cases the matrix A has a particular form, and Ab can be

computed with fewer operations. For example, the finite Fourier trans-

forin ygs...¥p-1 OF Xgseee Xy
n-1 .
Yo = 1 w"Sx w = e2ni/n
s=0

can be computed with about nlogpn multiplications and nlogyn additions

by using the fast Fourier transform (FFT) algorithm [4].

This paper deals with three aspects.of algebraic complexity. The
first section is concerned with lower bounds on the number of operations
required to compute several functions. Several theorems are presented
and their proofs sketched. The second séction deals with relationships
among the complexities of several sets of functions. In the third sec-
tion, several matrices of general interest are examined and upper bounds
on the number of operations required to multiply by them are construc-

tively derived.

LOWER BOUHDS

It is sufficient to consider the product Ab of a matrix A and a
vector b, since computing the entries of the product BC of an mxn matrix

B and an nxp matrix C is couivalent to computing the entries of Ab, where



B 3\ rC]]’

B €21

A= ) . b = :
B p, : Lcan

Thus if p>1, we immediately obtain a matrix'A having a particular form.

et F be a field, 6 a subficld of F and F(xs...5%,) the field of
rational functions in n variables with coefficients from F. Given
Fue, ¢ = {¢7,...,6¢}, how many operations are required to compute
y = {w],...,wm} using only the operations of addition, subtraction,
md]tip]ication and division?

Since F is given, and any operation within F réesults in an element
in F,coperations within F are not counted. HMoreover multiplications or
divisions, denoted by mult/div, by elemsnts of the subfield G are not
counted. The exclusion of these operations serves to strencthen thei
Yower bounds. A1l results in this section are stated with the under-

standing that mult/div are counted in the above manner.

Call a set {vy,...,v,} linearly independent over G mod V if no

nontrivial linear combination cyvyt...+cyv,, with coefficients from

G, is in V.

Denote by S™T the set of all mxn matrices with entries from a
Yy

set S,

Theorem 1. Given Fue, if v has r linearly independent elements
over G mod Ge¢+F, where Gat+f = {c]¢]+...+ct¢t+flci in G, f in F}, then

at least r mult/div are recuired to compute V.



Proof. If an algorithm computes v with only s mult/div uy,...,us,

where M3 may depend on o for i<j, then any elerent computed by the al-

gorithm is of the form

b]11]+...+bsu5 t ooyttt +
with b],...,ct in G and f in F. Define Fhe column vectors ¢'=(w],.;.,¢r)
u=(u],...,us) and ¢=(¢],..;,¢t), where Ploee oWy afe the r linearly inde-
pendent elements in v, Thu% there are.matrices B in G'*S, C in 6r*t and
d in Frx1 syuch that |

' = Bu+ Ce + d.

If s<r, the rows of B are linearly dependent, and a nontrivial vector a
in GV*F exists such that aB = 0. But then ay' = aCetad = ce+fT for some

vectof ¢ in G1*¥ and f in F, contradicting the hypothesis.

Corollary 1. Given Fulgll,...,eity, if gis not a root of any non-
trivial polynomial of degree <n with coefficients from F, then at least -
m mult/div are required to compute ¥ = {gjl,...,gjm} 1<j]<...<jmsn

whenever {]]"'f’1t} and {Jy,...,J,} are disjoint.

For the linear case v = A¢, vhere v is the column m-vector
(¥1s.e0stp)s ¢ is the column t-vector (¢15..06¢) and A is a matrix

in F™<Y Theorem 1 becomes:

Theorem 2. Given Fye, with the set ¢ = {¢75...5¢+} linearly inde-
pendent over F mod F, if A has r Tincarly independent rows over G mod

G1xt, then at least r mult/div ave required.fo compute Ag,

Proof. tlet the first r rows of A be the Yinearly independent ones,

A' bo the submatrix of these v rows, and o' be the r-vector {(oqy.....0.).
. Y Y1 9%3




As in Theorem 1, if s<r, there is a nontrivial vector a in 61" sych that
ap' = ah'¢ = co+f for some vector ¢ in 61*t and £ in F, so that (aA'-c)e=f.
But then, by the independence of {¢15...56¢}, aA'-c = 0. This contradicts

the independence of the rows of A',

Corollary 2. Given Fue, if A in F™N has r Yinearly independent rows
over G mod G]x”, and the np entries of B in ¢"*P are linearly independent

over F mod F, then at least mp mult/div are required to compute AB.

Corollary 3. Given Fu{x]],...,xnp}, with F = G(y]],...,ymn) at least

mp mult/div are requived to compute the product YX of the mxn matrix

Y= (yij) and the nxp matrix X = (Xij)-

Theorem 3.(Winograd,[2]) Given the set Fu{xy,...,xy}, if A in F™D
has ¢ linearly independent columns over G mod 6m=x1, then at least ¢

mult/div are required to compute Ax.

C6r011arx~g.(Hihograd[Z]) Given the set G(y],...,ym) U {Xqyseees%mts
at least mﬁ mult/div are required to compute the product Xy of the mxn "

matrix X = (xij) and the vector y = (yi).

Theorem 4. Given Fu{xy,....;x;3}, if A hes a subrmatrix S in FP>C,
and there are no nontrivial vectors o in 61" and 8 in 6x1 such that

aSg is in G, then at least ric-1 mult/div are required to corpute Ax.

Proof. ‘let A' be the rn submatrix of A which contains S as a

submatrix, If Ax can be computed with s mult/div, then there are



“matrices B in G™S, € in 67" and d in F™) such that A'x = By + Cx + d.
Since oSB ig not in G, the rows of A' must be linearly independent over
6 mod G1*M, so that r<s by Theorem 2. Partition B into B = (M 1), where
N is an rxr-1 matrix; then fhere is a nontrivial vector a in G1xr such
that all = 0. Partition w into y = (u'n"), where »' is a colum vector
of s-r+l elements; then |
a'x = alp' + alx + ad = a'y' + cx + f.

That s, there is a nontrivial lincar combination al', of the rows of
A', such that aA'x can be computed with s-r+1 mult/div. But since oS8
is not in G, ah' must have at least ¢ linearly independent columns over
G mod G, Thus aA'x requires at least ¢ mult/div by Theorem 3, so that
s-r+lz2c, | |

Corollary 5.(Winograd,[3]) Given the set R(y],yz) v {xy,0). At
least 3 real mult/div are required to compute the product

(xy + ix)(yy + iyp) of two complex nurtbers, (R= the reals).

Corollary 6. Given the set R(y],...,y4) U {x],...,xa}. At least
7 real mult/div are required to compute the product
(xq + %y + Jxg ¥ kxg)yy + 1y, + dy; + kyg)

of two quaternions.

Theorem 5, Given the set Fu{x]],...,xmn} v {v

i"“’yn}’ ifT division

is nol allowed, then at least m(n-1) additions or subtractions are re-
quired to compute the product Xy of the mxn matrix X = (Xij) and the

n-vector y = (yi).



Proof. Let o(y¥) be the minimum number of add/sub required to compute
¥, and let u = (1,1,...,1). If division is ﬁot alloved, then
o(Xu) < oXy); whereas, if it is allowed, the algorithm for Xy may fail
at y=u, The sum s = Xy1te - H¥my can be computed by first computing
S5 ='(Xu)i i=1,...,m and then using m-1 more additions to compute
S = Syt tsp Hencé o(s) < o(Xu) + m-1, and o(Xy) > of(s)-m+1. It can
be showm [1] that o(x]+...+xn) =n-1. Thus o(s) = m-1, and

o(Xy) = m(n-1).

COMPLEXITY RELATIOHS

¥hen the underlying algebraic system is a ring, rather than a field,
division may not be defined. In any event, unless a substantial reduc-
tion can be achieved by allowing division, algorithms in which division
is not used are preferable. In the sequel, we assume that the only

allowable operations are addition, multiplication and negation.

“For any matrix A, denote by A the set of entries of A. Uhenever
we speak of computing Ab, we in fact mean computing the set Ab. This
fine point should be understood; since A = B does not imply that A = B.
Moreover, the matrix notation Ab simply serves to represent the set
Ab--nothing else is implied. Spécifica]]y, it is not necessary to have
A and b in order to compute fb. For example, aj + ayx +.o.t anxn can
be represented as Ab, where A = (ao,...,an) and b is the column vector
b= (1,%,...,x"). Horner's method may be used to compute Ab, without

computing b,

Let «(T|S) be the minimum nurber of multiplications required to




compute the set T give the set S, and o(T[S) be the minimum number of
additions required to compute T given S. If yx stands for either = or

o, the following relations hold,

A

T.

1n

Relation 1. x(S|R) = x(T|R) 4if S

‘Relation 2. x(T|S)

A

x(TIR) if R
x(T[RuS) + x(S|R).

In

s.
Relation 3. x(T[R)

A

. .

- Relation 1 is useful for obtaining lower bounds on x(T|R), while 3 yields
lower bounds on x(S|R). Theorem 5 was proved by appealing to Relation 3

with T = {s}, S = Xuand R = Fu{xj1,...:Xg}-

In- the sequel, we will confine our attention to conputing Ab for
worst case b; namely, when b is the column vector x = (x],...,xn). More-

over, the entries of A are assumed to be indebendent of x.

Relation 4. Given S, if an independent variable in A or x is ré—‘
placed everywhere by an element of S, to yield a new matrix B or a new

vector y, then x(By|S) < x(Ax|S).

This relation is useful for obtaining lower bounds on y(Ax|S).
For example, if 1 is in S, then

o(a0+a]x+...+anx“) > g(a0+a]+...+an).

- Hhen the given set S is fixed, since we are considering the worst
case for x, we suppress x and S and simply write A for X(Ax|S). Do

not confuse xA with x(Aix|A.x).
Relation 5. yAB < yA + yB.

Proof. (AB)x = A(BX).



Relation 5 gives rise to the following corollaries:

: .

11.
111,

Iv.

- VI

VII.
VIII.

IX.

An elementary operation on A, can change'xA by at most *1.
If xP = 0 and xQ = 0, then xPAQsxA.

If A' is a submatrix of A, then- xA' =< xA.

If LP=I, QP=1 and xL=xP=xQ=xR=0, then xPAQ = xA.

Write A' ~ A if A' can be obtained by permuting the rows or

columns of A. If A' ~ A, then xA' = xA.

. I A' is obtained from A by addition/subtraction of one row

(column) to another row (column), then =A' = A,
For n 2 0, A" < nyA.
16 A= [ B), then 4t < o8 + xC.
A CBl? SN ¢ XL
If A= (B.BC), then wA < 2B + =C,

Given F, if A in F™M pag rank r, then wA < r(mtn-r) and

oA < r(min-r)-n. .

Relation 6. xA#B < yA+yb+x(Ax:Bx|Ax,Bx).

Proof. (A+B)x=Ax+Bx and {-B)x=-(Bx).

Relation 6 gives rise to the following corollaries:

XI.

wA+B < aAtul,



XIT. xAOB < yA + xB. ABB =

—_—

AO
0B
XIII. The Kronecker product AxD = (aijB) is obtained by replacing
24 j in A by aijB' If A is mxn and B is rxs, then AxB is
mrxns, and xAxB < ryA + nyB.
XIv., If A["] is the rth Kronecker pover of A, and A is mxm, then

JARET nxn, n=m", and XA[V] < %(]ogmn)xA

Notice that by Theorem 2, given the set G(y]],... ) u {x]],... },

’ymn ’er

at least mnrs mult/div are required to compute YxX.
le close this section with the two following observations:

If Ads in Z™N (the integers), then nA = 0, since every multiplication

by an integer constant can be replaced by'additions.

If Adis in Q™D (the rationals), then #A < min(m,n), since
A= d']B = Bd‘], where d is a common denominator of the entries of A,

and B = dA is in z™D,

We note in passing, that wA and oA are two independent measures, and
that there may exist no single a]gorithm.which'simu1taneously achieves
both A and oA; For example, if A = [k] is a 1x] matrix with k>0 an
integer constant, then oA = 0 siﬁcé Ax = kx. On_the other hand, =A =0

since Ax = xt...¥X.

UPPER BOUNDS

In vicw of Corollary 4 and Theovem 5, the uvsual aloorithm for matrix

multiplication achicvas both lower bounds. However, these bounds apply
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only to the worst case Xy. .In many cases, we are interested in computing
Ax, where A has some particular form. In this section we examine several
such matrices. Unless otherwise specified, all multiplications are

counted.

SYMMETRIC-LIKE MATRICES

Using matrices, the identities

eau + eav = ealutv) au + cav-= alutev)

"

au + av

1l

aluty) eau + av = ealutev)

where ¢ = *1, may be expressed as

e Plpon o oo

Corollaries II and III show that wB=nC=xa, Then

_la ebl_fa-eb o eb ebl
A"[b c}"(o c—b]+(b b]
wA < n(a-eb) + w{c-b) + wb

The 3x3_case will suggest a general tochhique:

HEGHE I

where u = a-b-c, v = d-b-e and w = f-c-e.
A < wu + wv + w4+ b+ e+ owe

]
o O <
O < O
=

]

n
(g w2/
0D o T
- DO

[ )
o O QO

|

O o0
o O Q0
O o0
o O O
o O O
o 0o

1

Proposition 1. Given A, i¥ A is nxn and of the form ajj = *a

Ji®
then A < n(n+1)/2, even if multiplication is not commutative.




1

Coro]]arxi7. Tvio complex numbers can be multiplied with 3 real

multiplications.
'Coro1]aer§, Two quaternions can be multiplied with 10 real

multiplications.

This technique is applicable to any matrix B ~ A, Horeover, the

entries of A may themselves be matrices.

An important symmetric-like matrix, with numerous applications, is

the Toeplitz malrix, defined by 45 ° A4y 5410

The 4x4 Toeplitz matrix
is given by

(d c¢lb a)

T4 i e dic b _ B C
f e

L9

o o

J

The-important thing to observe is that if n = rs, then T, can be
partitioned into an rxr Toeplitz matrix whose entries are sxs Toeplitz
matrices. Moreover, if A and B are mxn Toeplitz matrices, then A+B can

be computed with min-1 add/sub, and A:B is itself Toeplitz.

Corollary 9. Given Ty, ifn = rs, then =T < r(r+1)/2 nTg.

. . k ) .
Using this recursion, if n = NpeeNps then uTn < 1 ni(ni+1)/2. Hhen

n = 2K, then nT < 3k = 1093 . n1.58,  since T, can always be viewed
as a submatrix of Tzk vhenever n ¢ Zk, if [x7] denotes the smallest

integer 2x, we have: -
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Proposition 2. Given A, if A is an nxn Toeplitz matrix, then

A < 3T1092n'L even if multiplication is not comnutative.

Corollary 10. Two séquences of lengths m and n can be convolved

with 3710gt7 multiplications, t = mtn-1,

Corollary 11. Two polynomials of degrees m and n, can be multiplied

" with 3r]°92tj multiplications, t = min+l.

Corollary 12. Two numbers of m and n digits can be multiplied with

3M1092t7 pultiplications, t = mn-1.

<

Corollary 13, Given A, if Ais an nxn circulant, defined by

A lMogsnl
au = ai_’,] ’j_ﬂ (mod n) s then A < 3 2n .

In all cases, multiplication need not be commutative. Moreover,
given S, all results are contained in the smallest ring which con-

tains S. : - -

COMPANION MATRICES
In this subsection, we assume that the underlying algebraic system

is a field F.

The companion matrix of the po]ynomié?
. N n-1 _
¢(x) = X" - ¢y X ...

is the nxn matrix
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If D is the nxn diagonal matrix with entries agsee-sa s and u is the
coiumn n-vector u = (1,...,1), the Vandermonde matrix V = (ai), gencrated
by Go,...,dn_], iS the nxn n]atr“ix

V=(ubdu... o"ly.

shift Theorem. If ¢(a,) = O for r=D,...,n-1, then DV = VC,. If

ags...sap-] are distinct, then V™! exists, D = VC v-1, and

¢
. p(D) = Vp(C¢)V"] for any polynomial p(x).

Let P be the column vector (ao,...,an_]) associated with the poly-
nomial

plx) = a5 + apxt ...t a ]x”'].

It is easily verificd that if P is associated with p(x),- then C¢P is
associated with xp(x) mod ¢(x). loreover, if
q(x) = by + byx + ... + by qx"]

then q(Cy)P is associated with q(x)p(x) mod ¢(x).

1f Ggsee-s0p.] are distinct, then Vj] exists and
'q(c¢)P = v-lyg(c, vl = v-1q(D)VP.
If Q is associated with q(x), the elements of VQ are identical to the
dfagona] entries of q(D}. Thus q(D}VP is the term-by-term product
(vQ)« (VP) of the two column vectors VQ and VP. Then ~
q(Cy)P = V7I[(vQ)-(vP))

Call VQ the transform of Q. Then q(C¢)P can be computed as follows:

1. compute VP,

2. compute VQ.

3. multiply VQ by VP term-by-term.
4. take the inverse transform. ]
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If the degree of q(x)p(x) is less than n, then
a(x)p(x) = q(x)p(x) mod ¢(x). .
Thus the process of computing the coefficient vector q(C¢)P of

a{x)p(x) mod ¢(x) may be referred to as convolution mod ¢(x). Thus

we have:

Proposition 3. Any nonsingular Vandermonde matrix V has the con-

" .volution property.

Choose distinct integers GgseeesOp s then nV = 0. Moreover, thé
entries of v1 are rational constants, thus V-1 = k=10 for some integer
k and integer matrix U, It follows that U(VQ).(VP) canlbe computed
with n multiplications. HMultiplication by k“? takes no more than n

multiplications.

The process described above can be performed in any field of char-~
acteristic zero, or in any field of sufficient]y large characteristic.

Thus we have:

Proposition 4. In a field of characteristic zero or p 2 n, if

¢(x) has distinct integer roots, then q(x)p(x) mod ¢(x) can be com-

- puted with 2n.multiplications.

Lorollary 14, In a ficld o

(@]
Y
=5
H
-

two sequences of lengths m and n can be convolved with mtn-1 + min(m,n)

multiplications.
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Corollary 15. In a field of characteristic zero or p 2 mintl two-

polynomials of degree m and n can be multiplied with mtn+1 + min(m+1,n+1)

multiplications.

‘Corollary 16. In a field of charac;eristic zero or p = min-1, given

A, if A is an nxn circu]ant, then 7A < 3n-1.

For prime n, computing the finite Fourier transform can be shown to

be equiva]enf to multiplying by an (n-1)x(n-1) circulant [5].

Corollary 17. For prime n, the finite Fourier transform can be com-

puted with 3n-4 multiplications.

We close with a conjecture. If C is the companion matrix of x"-1,

any nxn matrix A can be written as

- n-1

A"AO +A]C+c-c +,\n_lc
where AO,...,An_1 are nxn diagonal matrices. Then
AB = (A, +...tAgC" 1) (Bgh. . 4By g CP )

appears as a cyclic convolution, except that C does not commute with the
coefficients. Nevertheless, based on the above results, we make the

following

‘Conjecture. Two nxn matrices can be multiplied with about 2n2

multiplications!
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